

Freescale MEMS Sensors for Automotive Safety Applications

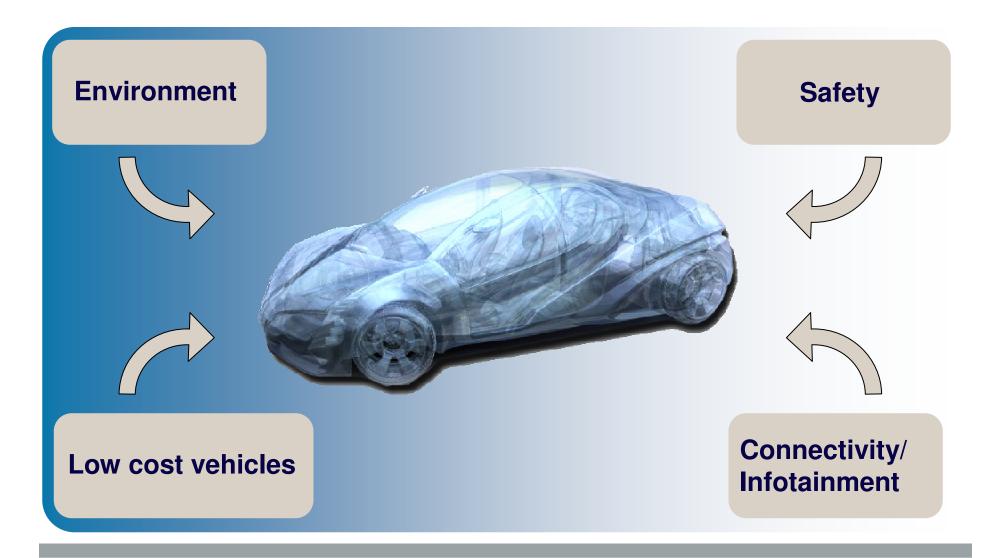
November 2009

Freescale Semiconductor China

Abstract

This session will explore Freescale's vision of automotive safety market and how its sensors can be implemented to meet the challenge of active and passive safety systems. It will also provide a update for Freescale entire automotive MEMS sensor product line including airbags, ESC, parking brakes, suspension, as well as advanced sensor technology and general solutions. Merging safety systems in the vehicle is discussed as a trend in future.

This presentation may contain forward looking considerations based on current expectations, forecasts and assumptions of Freescale that involve risks and uncertainties. Forward looking considerations are subject to risks and uncertainties associated with Freescale's business that could cause actual results to vary materially from those stated or implied by this materials and/or its presenter.



Summary

- Automotive Safety Market Forces
- Airbag and Electronic Stability Control System Explaination
- Freescale Automotive MEMS Technology Capabilities
- Freescale Airbag, ESC and Active Suspension Sensor Solutions
- Long Term Vision
- Conclusion

Automotive Market Forces

Automotive Safety Market Forces

More than

1.2 Million people

are killed on the world's roads every year!

Safety

Regulation key to mass penetration

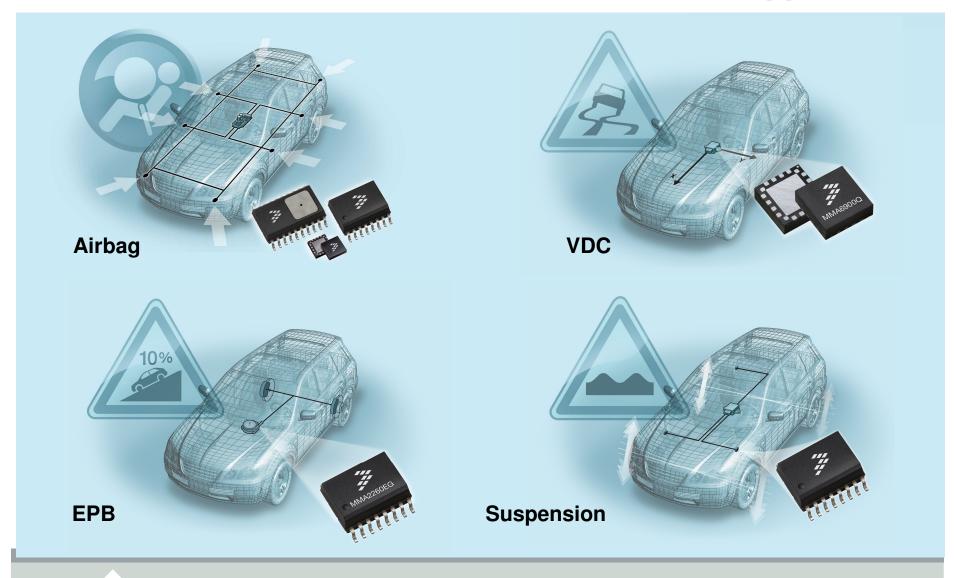
US legislation requiring front and passenger airbag, crash data retention, smart occupant sensing No specific airbag legislation in Europe, Japan and Asia Pacific

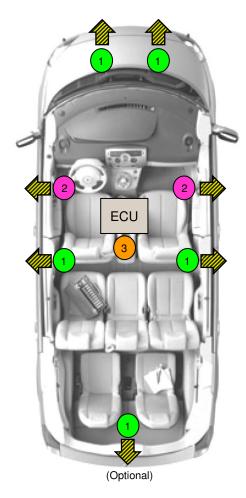
China is introducing front and side airbag legislation

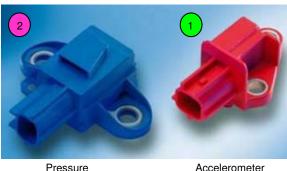
European pedestrian impact legislation may drive pedestrian airbag, although other solutions can be used ESP mandatory for all passenger cars sold in Europe by Nov 2011 and the US by 2012 (US NHTSA)

Consumer demand driving the most advanced systems

According to Chinese CCID consulting agency, Airbag fit rate in 2006 reached 80% on homemade cars 2005 survey by European NCAP showed that "safety" was the most important aspect influencing car choice Severe crash testing in Europe (front and side) is forcing a 100% fit rate






FSL Sensors in Automotive Applications

Airbag Application: Where are Sensors located?

Pressure Satellite

Accelerometer Satellite

Pressure and Accelerometer Satellites.

Located in the bumpers (Front crash detection) or in the B pillar (Side crash detection) for accelerometer. In the door cavity for pressure satellite.

Contains:

- Integrated Inertial sensor + few passive components
- Integrated Pressure sensor + few passive components

Airbag ECU

Located in the cabin (central tunnel)

Contains:

- Master MCU (16 or 32bits)
- Safing MCU (8 bits)
- Analog components with various level of integration (Power supply, satellite interface, squibs drivers, physical layers, ...)
- Main Inertial Sensors (Usually 2-axis XY)

How does ESC Work?

Roll

Longitudinal Acc., g_x Vertical Acc., g,

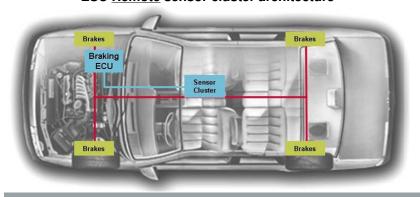
Yaw rate, ₽,

Pitch rate, Q

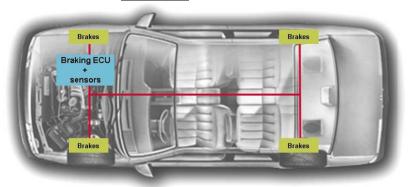
Lateral

► How does it work?

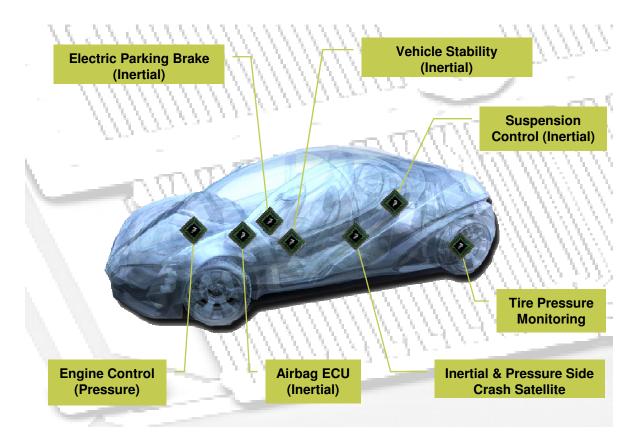
- · Electronic Stability Control (ESC) assist the driver in critical driving situations.
- ESC compares a driver's intended course with the vehicle's actual movement.
- When instability is detected, ESC automatically applies brakes to individual wheels and can also reduce engine torque to help keep you on track.



- · Steering wheel angle sensor
- Wheel speed sensors
- Pressure Sensors
- · Yaw rate Sensor
- · Acceleration sensor


Various Sensors orientations are needed depending on the position in the car:

- In-plane Gyro + Z axis low-g (Embedded)
- Out-of-plane Gyro + Y low-g (Remote)



ESC Embedded sensor cluster architecture

Freescale commitment to Automotive and MEMS

Market Leader

- ► FSL is the No. 2 supplier in the **Automotive MEMS Sensors market**
- ► Broad Standard portfolio

Business Facts

- ▶ 1 Billion MEMS sensor shippment till June, 2009
- ► Since 1997, 400 million units acceleration sensors shipped in custom safety automotive applications
- ► Among the largest supplier of barometric pressure sensors for engine management

One Billion MEMS Milestone just passed...

One Billion and Counting

From 1980 to 2009 Freescale has designed, produced and shipped innovative sensor products to global customers

1980

We manufacture our first uncompensated pressure sensor

pressure sensor production begins Pressure sensors are supplied for manifold

Bipolar integrated

1992 to present

Dedicated supplier to the critical care medical market through shipment of over 60 million units for the invasive blood pressure market

2002 Began providing pressure sensors for respiratory medical equipment

2003

The pressure sensor portfolio expands with the tire pressure monitoring system, utilizing capacitive technology to save power

June 2007

Spalding uses the ZSTAR wireless sensing triple axis reference design for an intelligent basketball that tracks trajectory

May 2005 -

Freescale introduces its first 3-axis MMA7260Q low-a inertial sensor. alleviating the need for multiple devices

2008

Synerject announces its ongoing use of Freescale pressure sensors for robust, cost-effective ECUs for twoand four-stroke engine management

December 2008

3-axis accelerometers offer reliable, costeffective freefall detection to help protect data stored on laptop hard disks

interface, small package and low power

Sensor products release a temperature compensated pressure sensor

absolute pressure (MAP) to significantly reduce

exhaust emissions and fuel consumption

Late 1980s Freescale* begins developing the first surface micromachined inertial sensors for the automotive airbag market

*The Semiconductor Products Sector of Motorola, Inc. became Freescale Semiconductor, Inc. in 2004.

1996 -Inertial sensors start volume production

Late 1990s

A new wingback/PDIP package is developed for the Z-axis inertial sensor

Early 2000s

Inertial sensor portfolio expands with X-, XY- and Z-axis low-g products for the consumer market

2003

Satellite accelerometers introduced for airbags provide smarter, faster response time deployment

July 2006 First HARMEMS technology MMA62xxEG products are shipped for airbags with

robust accuracy

February 2008 --

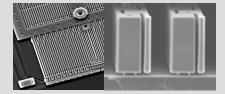
Motion-sensing accelerometer enables interactivity of Guitar Hero® and other popular video games

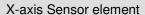
TPMS MPXY8300 highly

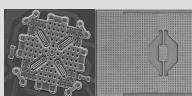
- integrated single-package low-power solution:
- Pressure sensor
- 8-bit MCU
- RF transmitter · 2-axis X- and Z-axis accelerometer

April 2009 MMA7660

intelligent 3-axis digital accelerometer introduced for advanced mobile phone interfaces

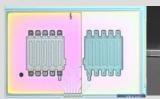





Freescale Sensor Technologies

Transducer Components

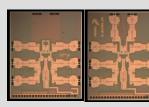
Inertial Sensors



Z-axis Sensor element

Pressure Sensors




Piezoresistive Bipolar

Capacitive Surface Micromachining

Radar

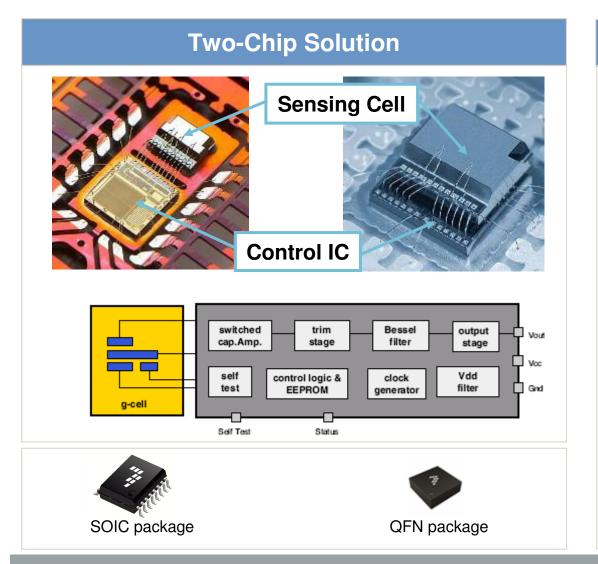
Embedded Systems

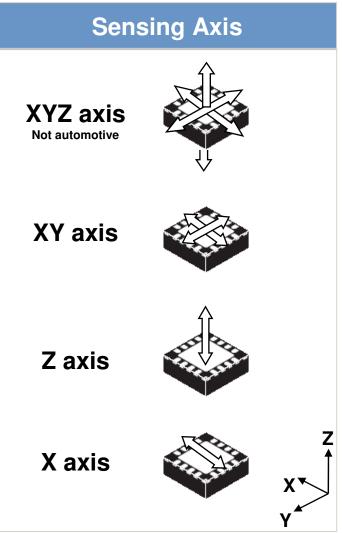
Mixed-Signal Technologies

- · Advanced Signal Conditioning
- High-Voltage Capable
- Two-Wire Connectivity
- · Wireless Connectivity
- Embedded OTP
- Full Design Kits, including MEMS

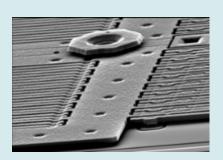
System in Package

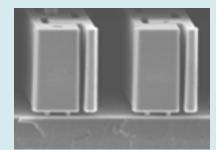
- Dual Die: Side-by-Side, Stacked
- Leadframe or LGA Packages
- Stress Relieved
- Resonance Modeled
- Media Compatible Pressure Sensor




MCU, Memory/Flash, and Embedded Firmware

Acceleration Sensor Common Features




FSL MEMS Technologies for Inertial Sensors

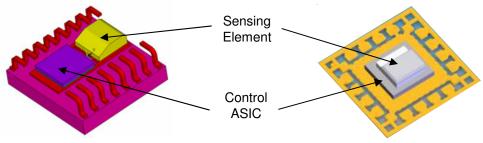
► Poly Silicon MEMS

- 3 μm movable structure
- Underdamped response
- Products: All axis accelerometers
- Markets: 1) Consumer 2) Automotive
- Volume production

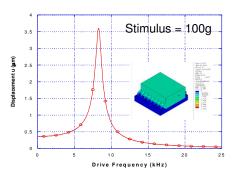
In combination with lead less package solutions, Freescale developed overdamped transducers to create solutions more robust to external parasitic vibrations (Airbag, ESC)

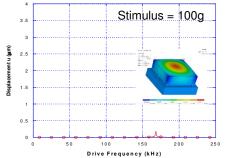
► High Aspect Ratio MEMS (HARMEMS)


- 25 μm movable structure /
- Overdamped response
- Products: Lateral accelerometers (X & XY)
- Markets: Automotive
- Volume production

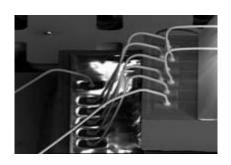

► Enhanced HARMEMS (e-HARMEMS)

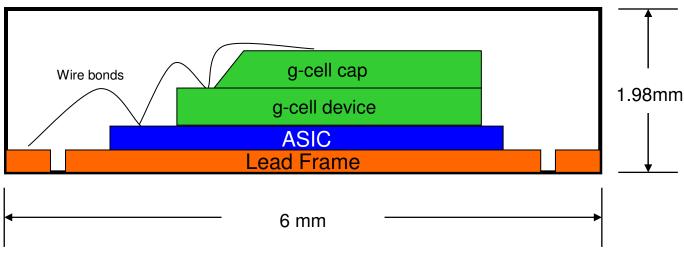
- 25 μm movable structure
- Top and bottom sensing electrodes
- Products: Gyro and combined sensors
- Markets: Automotive
- In development



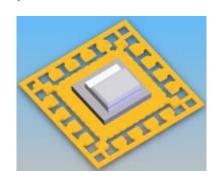

Freescale Inertial Sensors Packaging

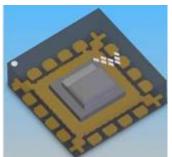
- ► 2 Resonance Modes, X & Y both at 8.3 kHz
- ► Resonance in the band of interest for car vibration

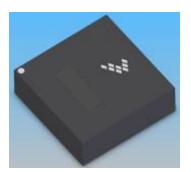


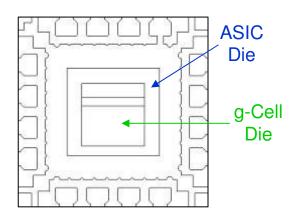


- ► First resonance mode at 168 KHz
- ► Resonance out of the band of interest for car vibration

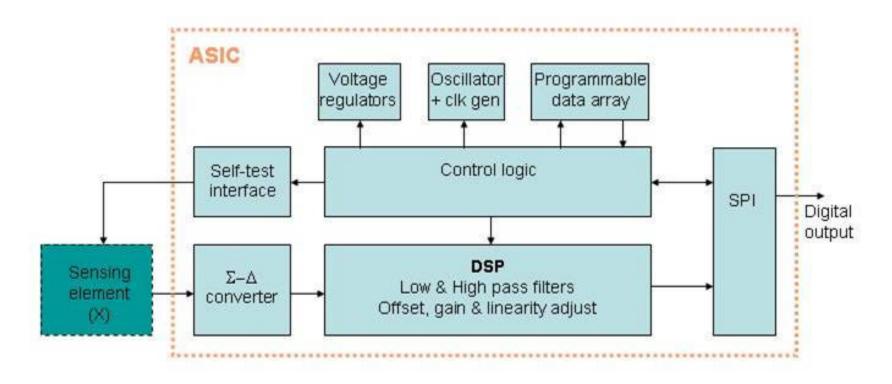


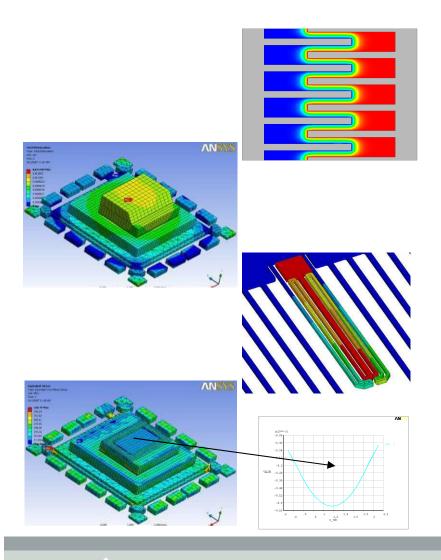

QFN Package Cross Section





Automotive Qualified Package: In production since 2006




Next Generation ASIC Architecture

- Flexible design allows to implement more channels like XY or XYZ inertial sensors and/or pressure sensors.
- Analog output can be provided by adding a DAC at the DSP output

Strong Simulation and Modeling Capabilities

- ➤ Use FEA (Finite Element Analysis) to respond to the "Multiphysics" challenge of MEMS design: Mechanics, Electrostatics and Fluidics.
- ➤ Use analysis to study TCO (Temp Coefficient Offset) behavior in various package.
- Use analysis to study vertical and lateral deformation of the g-cell
- Model package deformations over temperature and extract surface curvature where transducer sits.

Special Automotive Tests Capabilities

Mechanical Drop Tower

- Mechanical drop tower mounted along orthogonal sensing axes.
- The drop tower could apply shock pulses predicted to elicit a failure mechanism (Like stiction)

Ball Drop Test

- Ball drop test can produce high g amplitudes at high frequencies assumed comparable to those seen during crash test.
- If the output reproduces itself during several ball drop test runs, this means the device is performing in a controlled manner.

Automotive Inertial Sensor Applications

1 to 20g - X, Z axis

ABS - ESP: 1 to 2g

Electrical Parking Brake: 1 to 2 g

Roll over: 1 to 5 g

Navigation: 1 to 5 g

Tilt monitoring: 1 to 5 g

Suspension Control: 10 to 15 g

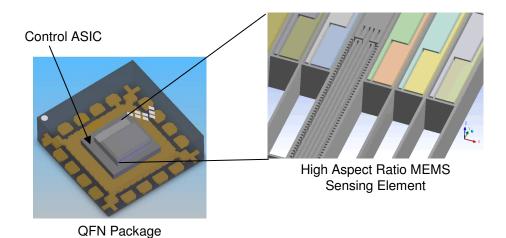
20 to 480g - X, Z, XY axis


Crash detection: 20 - 100 g

Side crash detection and motorcycle airbag: 100 - 480 g

FSL Sensors in Airbag Application

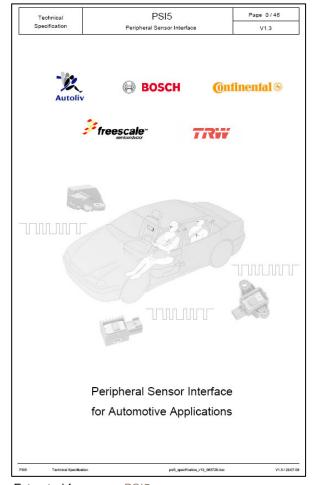
New Main ECU Airbag Sensors


- Dual XY axis Sensors with fully digital signal processing:
 - Overdamped Inertial sensing element
 - Digital output (10 bits)
 - 3.3V or 5V Power Supply
 - Bi-directional Self-test
 - Arming pins (Programmable threshold)
 - Programmability (filters, ...)

Airbag Central Module

Front Airbags

XY - Ax	is	X - Axis		
MMA6801QR2	20g/20g	MMA6851QR2	20g	
MMA6802QR2	20g/35g	MMA6852QR2	35g	
MMA6805QR2	20g/100g	MMA6853QR2	50g	
MMA6809QR2	35g/75g	MMA6854QR2	75g	
MMA6813QR2	50g/50g	MMA6855QR2	100g	


SOP: Q1 2010

FSL Commitment to PSI5 Standard

PSI5
Steering
Committee

Associated members

- Freescale is PSI5 Associated member since 2006
- As such, Freescale participes actively to the PSI5 consortium meetings with one representant.
- Tasks include:
 - ➤ Standard Specification Definition & Review
 - Development of Conformance Test
 - ➤ Implementation and promotion of PSI5 protocol

Extracted from www.PSI5.org page

Peripheral Sensor Interface 5 (PSI5)

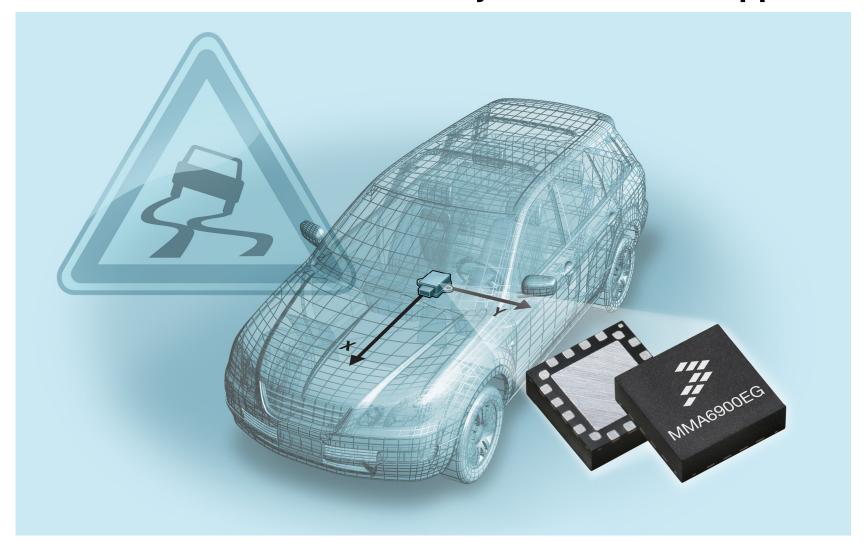
Integrated Airbag Satellite Sensors

- System-in-Package (SiP) solution integrates board-level functionality in a single package:
 - Inertial sensing element
 - State Machine
 - Power supply
 - Communication protocols (PSI5 or DSI)

Side Airbag Curtains

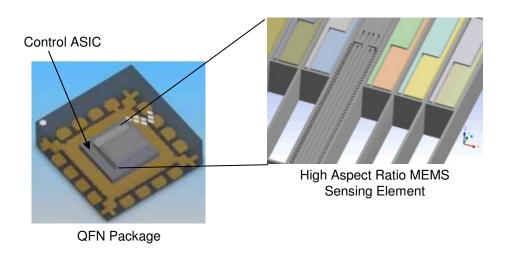
Silitie.			DSI 2.02 Protocole				
		Je.	X-Axis	Z-Axis			
	age	40g	MMA8204EG	MMA8104EG			
	Pack	50g	MMA8205EG	MMA8105EG			
	SOIC16 Package	100g	MMA8210EG	MMA8110EG			
	80	250g	MMA8225EG	MMA8125EG			

In Production


-7/						
1		PSI5 Rev1.3 Protocole				
_		X-Axis	Z-Axis			
age	60g	MMA5206Q	MMA5106Q			
QFN Package	100g	MMA5212Q	MMA5112Q			
	240g	MMA5224Q	MMA5124Q			
	480g	MMA5248Q	MMA5148Q			

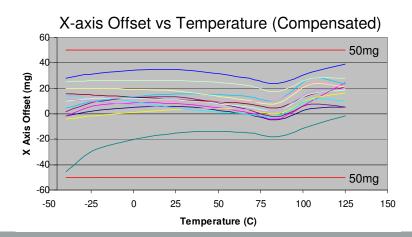
SOP: Q3 2010

FSL Sensors in Vehicle Dynamic Control Application



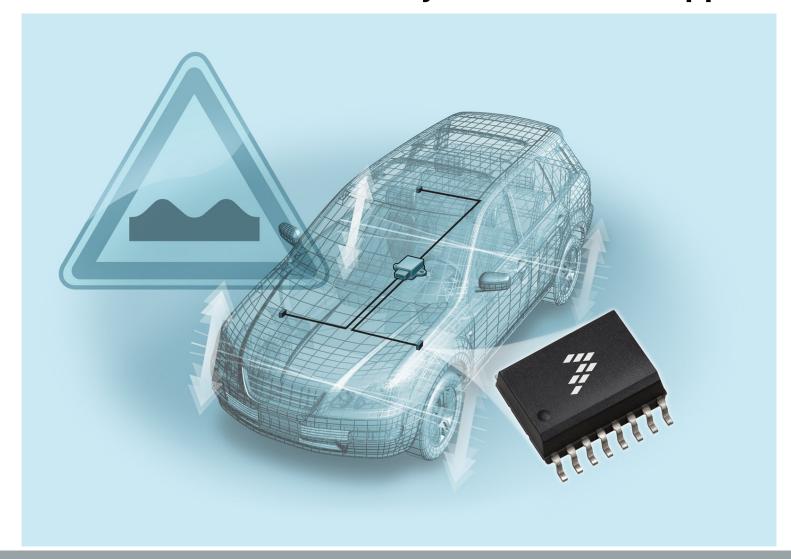
Vehicle Stability Control: Inertial Sensors

- Dual XY axis Sensors with fully digital signal processing:
 - Overdamped Inertial sensing element
 - Digital output (10 or 11 Bits)
 - Low offset drift over temperature (50mg)
 - 3.3V or 5V Power Supply
 - Bi-directional Self-test
 - Programmability (filters, ...)



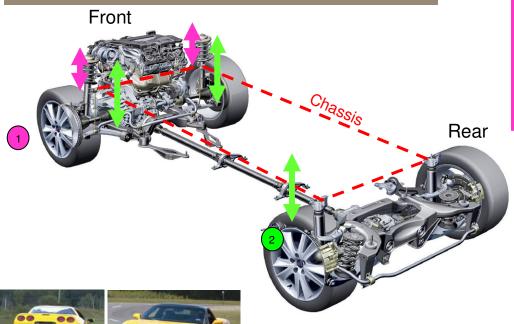
VSC Module

Car with and without VSC


Part Number: MMA6900Q ± 3.5g

SOP: Q2 2010

FSL Sensors in Vehicle Dynamic Control Application



Inertial Sensors for Electronic Controlled Suspension

Key function is to keep the car body stable through:

- Chassis movement measurement and / or
- Wheel/damper movement measurement

Without Active Damping System

With Active Damping System

Vertical wheel movement:

Located on damper directly

2 x Low g sensors

Cut off frequency around 300Hz to 400Hz

-14g ... +16g absolute or -15g ... +15g if compensated Sensitivity error: 5% target

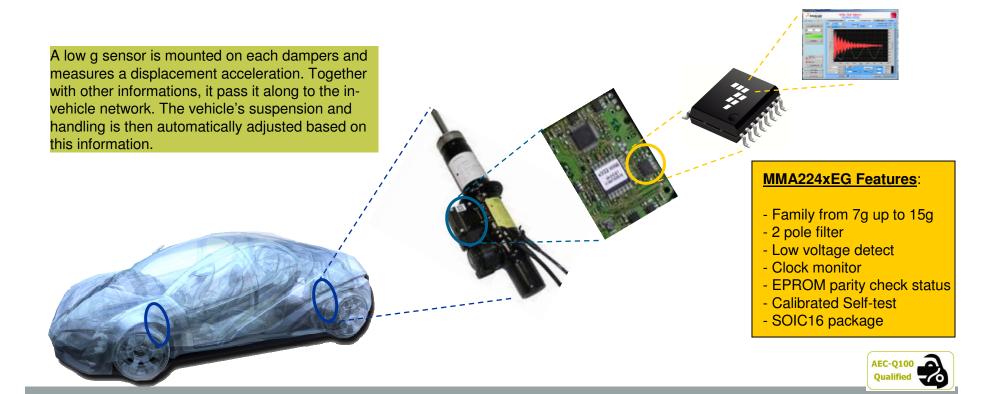
FSL product offering: MMA2240/41/42EG

Vertical body movement:

Located on chassis

3 x Low g sensors

-1g ... +3g absolute or -2g ... +2g if compensated


Cut off frequency around 100Hz Sensitivity error: 5% target

FSL product offering: MMA2260EG

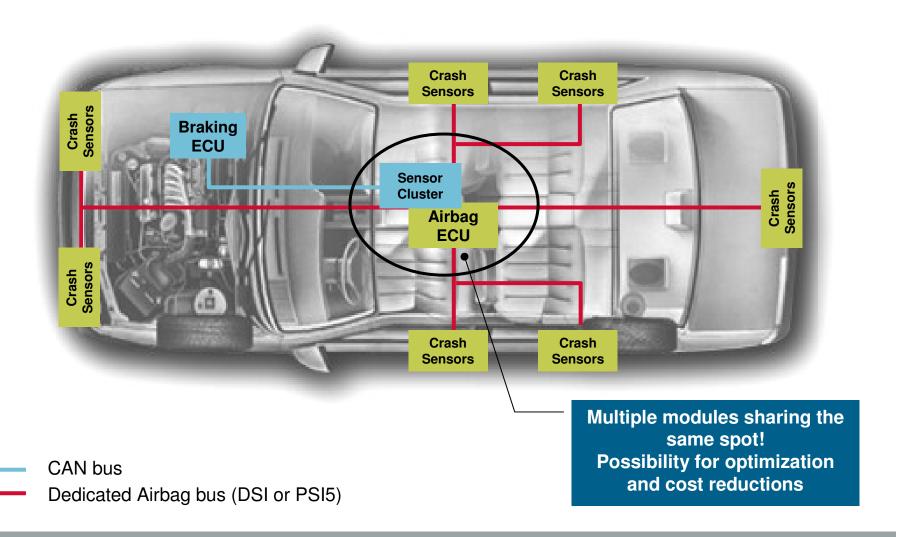
MMA224xEG: Low g Sensors for Active Suspension

- Electronic Damper Control
- Resolving the conflict between high ride comfort and high driving safety and agility.
- Minimization of wheel load variation and chassis oscillation.

Automotive Inertial Sensor Portfolio

Inertial Sensors Automotive parts

	Part number	Axis	g Range Min	capability Max	Technolog q-cell	y ASIC	Package	Temp Range	Status	EV Samples (*)	SOP (*)	Comments
Low g	MMA1220/50/60/70EG	Z	1.5	8	Poly-Si overdamped	CMOS	SOIC16 WB	-40℃/+105℃	In production			Analog output
	MMA2260EG	Х	1.5	1.5	Poly-Si	CMOS	SOIC16 WB	-40℃ / +105℃	In production			Analog output
	MMA2240/41/42EG	Х	7	15	Poly-Si	CMOS	SOIC16 WB	-40℃ / +125℃	In production			Analog output
	MMA6900Q, MMA6901Q	XY	2	5	HARMEMS Overdamped	Smartmos8MV	QFN 6*6	-40℃/+105℃	In development	August-09	March-10	Digital output
	MMA2201/02/04/44EG	Х	20	100	Poly-Si	CMOS	SOIC16 WB	-40℃ / +105℃	In production			Analog output
Medium g	MMA3201/02/22/24EG	XY	20	100	Poly-Si	CMOS	SOIC20 WB	-40℃ / +125℃	In production			Analog output
	MMA62xxEG, MMA62xxAEG	XY	20	100	HARMEMS Overdamped	Smartmos8MV	SOIC20 WB	-40℃ / +105℃	In production			Digital/Analog output
	MMA68xxQ	XY	20	100	HARMEMS Overdamped	Smartmos8MV	QFN 6*6	-40 ℃ / +125 ℃	In development	Now	February-10	Digital output
h g	MMA1200/11/12EG	Z	20	250	Poly-Si overdamped	CMOS	SOIC16 WB	-40℃ / +125℃	In production			Analog output
High	MMA2300EG	Х	100	400	Poly-Si	CMOS	SOIC16 WB	-40℃ / +125℃	In production			Analog output
Integrated Satellites	MMA82xxEG	X or Z	100	250	Poly-Si	Smartmos8MV	SOIC16 WB	-40℃ / +125℃	In production			DSI Protocol
Integ	MMA5xxxQ	X or Z	60	480	HARMEMS or Tetter Totter	Smartmos8MV	QFN 6*6	-40 ℃ / +125 ℃	In development	Now	April-10	PSI5 1.3 Protocol


(*) Dates provided for Information purpose only, can be modified without any further notice

Passenger detection / Roll-over mitigation / Active suspension Electronic Stabilty Control (ESC) applications / Accurate tilt monitoring Airbag Main ECU crash detection / Safing / Active suspension Airbag Satellite Modules

Next Trend: Passive and Active Sensors Merge

Conclusion

- Automotive trend is towards more Safety: with Airbag and now Vehicle Dynamic Control (VDC)
- Freescale is a key player in MEMS market and offer solutions for VDC
- Simulation & Modelling tools are key to develop the next generation of devices
- Airbag and VDC modules are merging together
- ► Long term Vision: Complete System Integration like VDC and/or airbag

Thank you!

